
A Communication Channel Density Estimating
Generative Adversarial Network

Aaron Smith, and Joseph Downey
Cognitive Signal Processing Branch

NASA Glenn Research Center
Cleveland, OH 44135

{aaron.smith, and joseph.a.downey}@nasa.gov

Abstract—Autoencoder-based communication systems use neu-
ral network channel models to backwardly propagate message
reconstruction error gradients across an approximation of the
physical communication channel. In this work, we develop and
test a new generative adversarial network (GAN) architecture for
the purpose of training a stochastic channel approximating neural
network. In previous research, investigators have focused on
additive white Gaussian noise (AWGN) channels and/or simplified
Rayleigh fading channels, both of which are linear and have well
defined analytic solutions. Given that training a neural network
is computationally expensive, channel approximation networks—
and more generally the autoencoder systems—should be eval-
uated in communication environments that are traditionally
difficult. To that end, our investigation focuses on channels that
contain a combination of non-linear amplifier distortion, pulse
shape filtering, intersymbol interference, frequency-dependent
group delay, multipath, and non-Gaussian statistics. Each of our
models are trained without any prior knowledge of the channel.
We show that the trained models have learned to generalize over
an arbitrary amplifier drive level and constellation alphabet.
We demonstrate the versatility of our GAN architecture by
comparing the marginal probability density function of several
channel simulations with that of their corresponding neural
network approximations.

Index Terms—machine learning, neural network, generative
adversarial network, communication, channel approximation.

I. INTRODUCTION

The autoencoder-based communication system (see Fig. 1)
has recently gained popularity in the research community. This
system was first proposed in [1], where the authors interpret
the transmitter as an encoder that maps incoming messages s
to transmitted symbols x. These symbols then pass through
a channel function h(x), after which the received symbols
y are decoded to recover the original message. Using this
framework, a modulation scheme can be learned by training
the transmitter and receiver networks to minimize a message
reconstruction error metric. To do this, loss gradients are
passed backwardly from the output layer of the receiver to
the input layer of the transmitter.

In practice, the gradients of the physical channel are un-
known and this prevents the transmitter network from receiv-
ing updates during training. This problem can be circumvented
by assuming channel models with known analytic expressions,
such as additive white Gaussian noise (AWGN) and Rayleigh
fading channels. However, these channels fail to justify the

ft(s)

Transmitter

p(y|x)

h(x)

Channel

fr(y)

Receiver

s ŝ
x y

Fig. 1. An autoencoder-based communication system.

increased computational cost involved with training an au-
toencoder system. Ideally, the autoencoder system would be
deployed in communication scenarios where no appropriate
closed form representation exists. In these environments, the
autoencoder could be used to learn unique modulation schemes
that improve standard metrics such as Bit Error Rate (BER)
or data throughput.

A solution to the missing channel gradients is to first
approximate the channel response using a neural network. The
neural network channel model can then act as a surrogate for
the physical channel when training the autoencoder system.
An early example of this method was demonstrated in [2],
where the authors minimize the Mean Squared Error (MSE)
between the real channel response and the response of the
neural network model. This method results in a neural network
that approximates the means of the conditional distributions
of the channel. In [3], the authors trained a stochastic chan-
nel model using a Generative Adversarial Network (GAN).
Though they only demonstrated this on AWGN and Rayleigh
fading channels, they did show that the stochastic model could
be used to train an autoencoder system. In [4], the authors used
a GAN to approximate a stochastic channel that included non-
linear distortions and non-Gaussian statistics. In general, their
results demonstrate the potential in using a GAN to learn a
difficult channel, but the channel contains no memory effects
and the marginal Probability Density Function (PDF) of the
learned channel model differs from the PDF of the simulated
channel.

In this work, we propose and evaluate a new GAN architec-
ture that can learn non-linearities, memory effects, and non-
Gaussian statistics. In Section II, we describe our channel
simulations, GAN architecture, and various implementation
details. In Section III, we present and discuss our evaluation
of the GAN. We provide concluding remarks in Section IV.

U.S. Government work not protected by U.S. copyright

https://ntrs.nasa.gov/search.jsp?R=20190026982 2020-05-08T15:49:49+00:00Z

II. METHODS

In Subsection II-A, we describe the four channel simulations
that are used to test the versatility of the GAN. Each of
our channels can potentially contain Intersymbol Interference
(ISI), due to the combination of a Root Raised Cosine (RRC)
pulse-shaping filter and a non-linear power amplifier. Addi-
tionally, tight filtering of the signal, to ensure compliance
with a spectral mask, causes the channel to be dispersive
and provides another source of ISI. We also include a Finite
Impulse Response (FIR) based multipath channel, as well as an
uncorrelated phase noise channel. In Section II-B, we provide
a detailed description of the GAN architecture. In Section II-C
we discuss several aspects of our implementation such as: the
channel sounding distribution, extending the generator input to
support multiple symbols, data feeding, and hyper-parameter
selection.

A. Channel Models

In the autoencoder-based communication system (see Fig.
1), the “channel” includes all the processes between modu-
lation and demodulation. Therefore, our channel simulations
contain elements, such as pulse shaping, that are not tra-
ditionally considered part of the channel. We assume that
the transmitter is using an amplitude and phase-shift keying
modulation scheme such that symbols x ∈ C. In this work,
we construct channel models that present unique challenges
to a traditional communication system. These include non-
linearities induced by a transmit amplifier, dispersive channel
elements such as a high-order spectral masking filter, multi-
path, and non-Gaussian statistics.

Fig. 2, shows the block diagram of our four channel
simulations. We identify each channel by its subfigure label.
Channel ha represents our most basic channel model and
serves as the basis for each of the other channels. This channel
begins by interpolating the incoming symbol stream using a
129 tap RRC pulse-shaping filter, with roll-off factor α. After
pulse shaping, the resulting sample stream is passed through
a memoryless Saleh amplifier model, which is shown in Fig.
3. After amplification, we apply an AWGN process, perform
matched filtering, and recover the received symbols. In each of
our channel models, we assume that the proper procedures are
in place for carrier removal and symbol timing acquisition. The
channels contain an implicit linear low-noise receive amplifier
with a constant gain factor.

In channel hb, we simulate an environment where a
transponder seeks to maximize throughput for a given band-
width and utilizes a bandpass filter to ensure compliance with
a spectral mask. A sharp filter cutoff would maximize the users
usable spectrum, but can also induce a frequency-dependent
group delay due to a large filter order. We simulate this with
an eighth-order lowpass Infinite Impulse Response (IIR) filter.
In Fig. 4 we show the filter’s normalized amplitude response
and overlay the normalized Power Spectral Density (PSD) of
a Binary Phase Shift Keying (BPSK) signal at two different
operating points. In Fig. 5, we show the group delay of the
filter as a function of frequency. In channel hc we evaluate

x 8
Pulse

Shaping
(RRC)

Power
Amplifier
(Saleh)

+

N (0, σ2)

Pulse
Shaping
(RRC)

8 y

(a)

x 8
Pulse

Shaping
(RRC)

Power
Amplifier
(Saleh)

Lowpass
(IIR)

Lagrange
Resample

(FIR)
+

N (0, σ2)

Pulse
Shaping
(RRC)

8 y

(b)

x 8
Pulse

Shaping
(RRC)

Power
Amplifier
(Saleh)

Multipath
(FIR) +

N (0, σ2)

Pulse
Shaping
(RRC)

8 y

(c)

x 8
Pulse

Shaping
(RRC)

Power
Amplifier
(Saleh)

+

N (0, σ2
1)

×

ej(N (0,σ2
2))

Pulse
Shaping
(RRC)

8 y

(d)

Fig. 2. A block diagram of the four channel simulations used in this work.

−20 −15 −10 −5 0
Pin/Psat [dB]

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

P
ou
t/
P
sa
t

[d
B

]

P
1
d
B

P
3
d
B

P
sa

t

Power

Phase

0

5

10

15

20

∆
φ

[d
eg

]

Fig. 3. The amplitude and phase response for our normalized Saleh amplifier
model.

a FIR based multipath model with constant taps and channel
hd demonstrates a non-Gaussian distribution by applying an
uncorrelated phase noise process.

B. GAN Architecture

The purpose of the GAN is to train a generator that
approximates the output of an arbitrary channel such that
they have the same conditional PDF. In image generation,
several researchers have investigated similar problems, where a
conditioning input stimulates a distribution of possible outputs.
In this work, we leverage that body of research by adapting a
modern GAN architecture to our channel estimation problem.

In [5], the authors train a generator that uses an input
image and a vector of latent variables z ∼ p(z) to produce
a distribution of output images. In that work, the authors
attempt to enforce a robust utilization of the latent vector by
making the connection between the output and the latent code
invertible. Their model combines the information cycles of a
Variational Autoencoder (VAE)-GAN [6], with a dual cycle—
inspired by the work in [7], [8], and [9]—which reconstructs

0 1 2 3 4
f/Rs

−40

−20

0

P
S

D
/A

m
p

li
tu

d
e

[d
B

]

1+
α

2

Pin = Psat

20 dB backoff

Filter

Fig. 4. The amplitude response of the spectral masking filter used in channel
hb and the normalized PSD of a BPSK signal at two operating levels.

0.0 0.2 0.4 0.6 0.8 1.0
f/Rs

0

2

4

6

G
ro

u
p

D
el

ay
[T
s
]

1+
α

2

Fig. 5. Group delay of the spectral masking filter used in channel hb.

the latent vector. Their claim is that this bijective approach
assists in preventing mode collapse.

In Fig. 6a, we show our GAN training architecture. In
this work, we adopt the dual cycle concept presented in [5],
but modify the components of their architecture to perform
channel approximation. In the upper portion of Fig. 6a, we
implement the VAE cycle, which generates an output recon-
struction loss metric `y that is used to stabilize the training
process. In the lower portion of Fig. 6a, we implement the
latent regression cycle, which similarly produces a latent
reconstruction loss metric `z . In the latent case, we use a
sample estimate of z as opposed to the point estimate used
in reconstructing y. On the right side of Fig. 6a, we show the
discriminator signals. We use f to signify fake inputs and fe
when the input utilized an encoded noise vector. In contrast
to the implementation described in [5], we provide both the
encoder and discriminator networks with our conditioning
input. This gives both units the ability to either encode or
discriminate based on knowledge of the transformation from
x to y.

In this work, we construct our objective functions following
the least squares approach [10]. Our discriminator objective
function

min
D

V (D) = Ld + Lfd + L
fe
d (1)

performs the standard binary classification problem between
real and fake samples, with the addition of the encoded
samples, as was done in [6]. We capture the classification error
of real examples as

Ld = Ex,y∼p(x,y)[(D(x, y)− 1)2] (2)

with a real label target of one. The corresponding error due
to fake samples is

Lfd = Ex∼p(x),z∼p(z)[(D(x, G(x, z)))2] (3)

where the target label for fake samples is equal to zero. The
last element in our discriminator objective function

Lfed = Ex,y∼p(x,y)[(D(x, G(x, E(x, y))))2] (4)

represents the error associated with fake examples that were
constructed using knowledge of the transformation between x
and y.

The generator objective function

min
G

V (G) = Lfg + Lfege + λyLy + λzLz (5)

combines the losses associated with discriminator labeling and
the reconstruction losses from the symbol and latent variables.
The first two components of the generator objective

Lfg = Ex∼p(x),z∼p(z)[(D(x, G(x, z))− 1)2] (6)

Lfege = Ex,y∼p(x,y)[(D(x, G(x, E(x, y)))− 1)2] (7)

are the standard discriminator label losses, though we again
include the encoded version. The last two components of the
generator objective relate to the reconstruction error where

Ly = Ex,y∼p(x,y)‖y −G(x, E(x, y))‖1 (8)

is the expected L1 distance between the true y and the re-
constructed ŷ produced by the generator, using latent samples
provided by the encoder network. This is the loss term associ-
ated with the VAE cycle discussed earlier and is approximated
using the `y signal in Fig. 6a. The latent regression cycle is
represented as

Lz = Ex∼p(x),z∼p(z)‖z− E[E(x, G(x, z))]‖1 (9)

where we find there expected L1 distance between an input
latent vector and a vector of sample estimates from the encoder
output. In Fig. 6a, we approximate this using the signal `z .

The encoder objective function

min
E

V (E) = Lfege + λyLy + λzLz + λKLLKL (10)

is similar to the generator, though it excludes Lfg and adds
the Kullback-Leibler (KL)-divergence from the encoder output
distributions to a vector of normal random variables as

LKL = Ex,y∼p(x,y)[DKL(E(x, y)‖N (0, I))] (11)

where DKL(p‖q) = −
∫
p(z) log p(z)

q(z)dz. Given that the gen-
erator is a deterministic network, we produce a stochastic
output by sampling the latent space according to a prior
distribution p(z) ∼ N (0, I). Therefore, during training, we
use the expected KL-divergence to encourage the encoder
to produce samples with a distribution similar to those used
during inference. We calculate the KL-divergence in our
training graph using the signal `KL in Fig. 6a.

Ld = (d− 1)2

Lf
d = d2f

Lfe
d = d2fe

Lf
g = (df − 1)2

Lfe
ge = (dfe − 1)2

Ly = `y

Lz = `z

LKL = `KL

LD = Ld + Lf
d + Lfe

d

LG = Lf
g + Lfe

ge + λyLy + λzLz

LE = Lfe
ge + λyLy + λzLz + λKLLKL

(a) Training Graph (b) Loss Components

(c) Optimizer Losses

E
x

y

ze

µze

σ2
ze

G
x ge

y
`yL1

DKL(N (µze
, diag(σ2

ze
)) || N (0, I)) `KL

G
x

z

g
E

x

zge

µzge

σ2
zge

L1

z
`z

D
x

y
d

D
x

g
df

D
x

ge

dfe

Fig. 6. (a) A diagram of the GAN training graph. (b) Loss component approximation from graph signals. (c) A summary of the optimizer losses.

In Fig. 6b, we show our approximations of the loss com-
ponents, where we estimate the expected value by averaging
over a batch of examples. In Fig. 6c, we combine the loss
components of Fig. 6b, to estimate the objective functions in
equations (1), (5), and (10). We then use these signals in three
separate optimizers that are jointly minimized during training.

In Fig. 7, we diagram the generator, discriminator, and
encoder networks. Each of these elements utilize a symbol
energy calculation, denoted by | · |. Hidden and output layers
follow the same notation, for example, “FC : 128 : Lin”
signifies that the layer contains 128 fully connected neurons
with a linear activation function. There is an implied concate-
nate operation whenever a layer is shown to have multiple
inputs. We implement the variational aspect of the encoder
by interpreting the output of two separate layers as vectors
of mean and variance values, which are then used to produce
noise samples. Our actual implementation returns log(σ2), as
is common in literature, with the values being exponentiated
as needed.

C. Implementation Details

Each of our channels (see Fig. 2), include a non-linear
amplifier that will induce ISI when the amplifier is driven
into compression. Additionally, channel hb will cause ISI due
to the frequency-dependent group delay associated with the
IIR spectral masking filter. In an ideal case, without ISI, the
output symbol is only dependent on the time aligned input
symbol. However, ISI causes a dependency on the surrounding
transmit symbols. Due to this, we construct training examples
x ∈ CN , which are centered on the current time-step transmit
symbol. For example, if transmit symbol xi results in the time
aligned channel output yi, then our example vector would be
x = [xi−N−1

2
, ..., xi, ...xi+N−1

2
], where N is odd integer.

To construct a training set {(x ∈ X ⊂ CN , y ∈ Y ⊂ C)},
which defines a joint probability p(x, y), we must choose a
sounding distribution p(x). Our sounding distribution should
canvas the usable complex domain such that the generator
produces realistic results for an arbitrary set of input sym-

Generator

x

z

| · |

F
C

:
1
0
2
4
:
R
eL

U

F
C

:
2
:
L
in

ŷ

Discriminator

x

y

| · |

| · |

F
C

:
1
0
2
4
:
R
eL

U

F
C

:
1
2
8
:
R
eL

U

F
C

:
1
:
L
in

d

Encoder

x

y

| · |

| · |
F
C

:
1
0
2
4
:
R
eL

U

F
C

:
1
2
8
:
R
eL

U

F
C

:
le
n
(z
)
:
L
in

F
C

:
le
n
(z
)
:
L
in

N
(µ

,d
ia
g
(σ

2
))

σ2

µ

z

Fig. 7. A diagram of the Generator, Discriminator, and Encoder networks.

bols. We assume that the input symbols are independent and
identically distributed and use a combination of the following
p(x) distributions:

• Uniform magnitude - x ∼ U(0, a)× ejU(0,2π)
• Uniform disk - x ∼

√
U(0, a)× ejU(0,2π)

• Gaussian - x ∼ N (0, σ2) + jN (0, σ2).
Using a uniform random variable for the magnitude component
of a complex value results in a higher sample density near
the origin of the complex plane due to the area element
dA = 2πrdr. Normalizing such that the complex plane is
sampled with uniform density results in a bias toward high
energy symbols in the training set. As mentioned, we only
train on the usable complex plane, which was determined by
the maximum output power of our amplifier model.

In this work, we use continuous random variables when
building a training set to ensure that the generator generalizes

TABLE I
HYPER-PARAMETERS USED IN THIS WORK.

Parameter Value
Batchsize 250
len(z) 6
λy 2.0
λz 1.0
λkl 0.008

to an arbitrary set of inputs. Due to this, the generator will
not have the opportunity to train on sequences of symbols
with repeating elements. For instance, a BPSK-like modulation
that randomly selects one of two symbol values. In the future,
it may be worthwhile to test a more structured training set
that includes common features like constant energy rings (PSK
constellations) and sequences that draw symbols from a small
set.

Using our p(x) sampling function, we construct stimulus
vectors of length M , where M >> N , and pass that through
our channel model. Then, due to the filtering processes in our
channels, we trim transient symbols and realign the stimulus
and response vectors. We then develop training sets by slicing
out examples (x, y) from the stimulus and response vectors at
random indexes.

We have been describing symbols as complex values, but
these are processed by the neural networks as 32-bit floating
point values. This is done by simply concatenating the real and
imaginary terms together. In the generator network, shown in
Fig. 7, the final layer contains two neurons. These two neurons
are interpreted as the real and imaginary components of the
output symbol y.

In Fig. 6a, the diagram shows multiple instances of the
generator, encoder, and discriminator elements. Tensorflow
[11] similarly implements these as additional elements in
the resulting graph structure. However, instances of the same
element share a common set of weights and biases. Therefore,
we interpret there to be a single generator, with the various
outputs corresponding to different input signals. Similarly,
we interpret there to be a single discriminator and encoder
element.

Regardless of the channel model, we maintain the same
graph structure. In Table I, we list the various parameters
used during training. Weight updates are performed using the
Adam optimization algorithm [12], which minimizes the losses
summarized in Fig. 6c. In general, we based the length of
the input vector x, on the length of the pulse shaping filter.
Given that we use a 129 tap RRC filter, with eight samples per
symbol, we primarily used a len(x) of 17 complex symbols,
though we do investigate the impairments associated with
shortening x in the next section.

III. RESULTS

After training, the generator network is extracted from the
training graph and used as shown in Fig. 8. During inference,
the generator uses a symbol sequence x and noise samples
z ∼ N (0, I) to produce a guess of the channel output. We

G
x

z ∼ N (0, I)
ŷ

Fig. 8. Operation of the Generator during inference.

evaluate the generators by comparing the marginal PDF of
a channel p(y) =

∑
x p(y|x)p(x) with that of a trained

generator. We approximate the PDFs using a two-dimensional
histogram and present those results visually. For these com-
parisons, we choose input distributions p(x) that should be
familiar to the reader, i.e. a Quadrature Phase-Shift Keying
(QPSK) constellation, though the generator will respond to an
arbitrary set of inputs and has not learned anything specific to
these standard constellations.

For visualization, we define the following modulation alpha-
bets: BPSK, QPSK, 8-PSK, 16-QAM, 16-APSK, 32-APSK,
and 64-QAM. We construct transmit signals by drawing sym-
bols from a constellation with equal probability. Normalized
signal power is calculated as

Px

Psat
[dB] = 20 log10(β)− 10 log10(PAPR) (12)

where β ∈ (0, 1] is an amplitude scale factor and PAPR is
the Peak-to-Average Power Ratio of the constellation.

First, we analyze a generator approximation of channel
ha, with a RRC roll-off factor α = 0.35 and a normalized
AWGN noise power Pn/Psat = −35 dB. In the upper portion
of Fig. 9, we feed a QPSK signal into both the channel
and the generator. As β is increased, the power amplifier is
driven deeper into saturation which causes ISI and distorts the
output. This demonstrates that the generator has learned to
approximate the channel response over a range of input power
levels. In the lower portion of Fig. 9, we hold β constant, but
vary the input constellation, showing that the generator has
learned an appropriate response to an arbitrary modulation
alphabet.

In Fig. 10, we show that a generator is able to learn
various roll-off factors and AWGN powers. In this case, we
train separate generators for each of the selected parameters.
This is in contrast to the previous test, where one generator
had generalized over an arbitrary input. We found that the
generator generally performed better in low signal-to-noise
ratio (SNR) channels when a small number of hidden layers
was used.

Our final analysis of channel ha tests the impact of varying
the input vector length len(x). We test this using an approxi-
mation of the total variation distance δ(P,Q) = 1

2‖P −Q‖1,
where P and Q are binned estimates of the channel and
generator marginal PDFs. Channel parameters are held con-
stant, with α = 0.1 and Pn/Psat = −35 dB. The input
is a 16-QAM signal with β = 0.4. We train a separate
generator for each len(x) ∈ {1, 3, 5, 17} and normalize the
results based on len(x) = 1. In Table II, we show that the
majority of our gain comes from the inclusion of just a few

β : 0.33 β : 0.66 β : 1.0

BPSK 16-APSK 64-QAM

C
h
a
n
n
el

O
u
tp
u
t

G
en
er
at
o
r
O
u
tp
u
t

C
h
a
n
n
el

O
u
tp
u
t

G
en
er
a
to
r
O
u
tp
u
t

Fig. 9. An evaluation of the ha channel approximation results. We show
that the generator has learned to produce realistic outputs over arbitrary input
power levels and modulation alphabets.

TABLE II
APPROXIMATED TOTAL VARIATION DISTANCE BETWEEN THE CHANNEL

AND GENERATOR PDFS AS A FUNCTION OF len(x).

len(x) δ

1 0 dB
3 -4.79 dB
5 -6.81 dB
17 -7.78 dB

neighboring symbols, though we expect that the neighboring
symbols become increasingly important as the amplifier is
driven toward saturation.

In Fig. 11, we analyze channel hb, where a sharp spectral
masking filter causes a frequency-dependent group delay (see
Figs. 4-5). In this case, we use a small roll-off factor α = 0.1
to simulate the scenario where high spectral efficiency is de-
sired. Additionally, we set Pn/Psat = −35 dB, len(x) = 17,
β = 0.5. In Fig. 11, we can see that the filter has caused
an AWGN like distribution around the symbols. In an eye
diagram, we can also see this as a closing of the eye. The
results of our final two channels hc and hd are shown in
Figs. 12 and 13. These results show that the GAN is able to

α : 0.10 α : 0.50 α : 0.90

Pn/Psat : -35 dB Pn/Psat : -22.5 dB Pn/Psat : -10 dB

C
h
a
n
n
el

O
u
tp
u
t

G
en
er
at
o
r
O
u
tp
u
t

C
h
a
n
n
el

O
u
tp
u
t

G
en
er
a
to
r
O
u
tp
u
t

Fig. 10. Using channel ha, we demonstrate the versatility of the GAN
architecture by varying the RRC roll-off factor and channel AWGN power.

learn both the multipath environment and an estimate of phase
noise. To limit the number of figures, we forgo a demonstration
over various roll-off factors, AWGN power levels, and β scale
factors—for channels hb, hc, and hd. However, as was shown
for channel ha, those same generalizations apply to each of
the other learned channels.

In this work, the majority of the results are presented as
a visual comparison of probability densities. This qualita-
tive analysis is useful for a quick verification of a GAN
architecture, but without a quantitative metric, it is difficult
to directly compare competing architectures. In Table II, we
used a distance metric to compare the results of generators
that had been trained using various input vector lengths. In
that case, we could directly compare distance results because
we maintained all aspects of the input distribution p(x), the
conditional channel distribution p(y|x), and approximating
assumptions such as bin locations and the number of samples.
However, a GAN should be able to learn a variety of channels
over arbitrary inputs. This is a difficult capability to quantify
and would likely involve the standardization of a set of channel
simulations.

QPSK 16-QAM 32-APSK

C
h
a
n
n
el

O
u
tp
u
t

G
en
er
at
o
r
O
u
tp
u
t

Fig. 11. An approximation of the dispersive channel hb.

QPSK 16-QAM 32-APSK

C
h
a
n
n
el

O
u
tp
u
t

G
en
er
a
to
r
O
u
tp
u
t

Fig. 12. An approximation of the multipath channel hc.

QPSK 16-QAM 32-APSK

C
h
an

n
el

O
u
tp
u
t

G
en
er
at
or

O
u
tp
u
t

Fig. 13. An approximation of the uncorrelated phase noise channel hd.

IV. CONCLUSION

The autoencoder-based communication system presents a
unique opportunity for a global optimization routine that
combines previously independent processes. Passing loss gra-
dients from a receiver to a transmitter can be accomplished
by learning a neural network approximation of the physical
channel. An ideal channel approximation algorithm should be
capable of learning an arbitrary channel solely from chan-
nel measurements. Furthermore, the approximation algorithm
should be capable of learning channels that are traditionally
difficult to model, as this would enable an autoencoder system
to operate in environments where no standard solution is
available.

In this work, we use non-linearities, memory effects, non-
Gaussian statistics to test the capabilities of a new GAN
architecture. We present our results as a visual comparison
between the marginalized PDFs of the channel and a trained
generator. Our results show that the proposed GAN is able
to train a generator that well approximates our four channel
simulations. Furthermore, we show that a trained generator
can produce high fidelity approximations of a channel over an
arbitrary input power level and modulation alphabet.

REFERENCES

[1] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, Dec 2017.

[2] T. J. O’Shea, T. Roy, N. West, and B. C. Hilburn, “Physical layer
communications system design over-the-air using adversarial networks,”
in 2018 26th European Signal Processing Conference (EUSIPCO), Sep.
2018, pp. 529–532.

[3] H. Ye, G. Y. Li, B. F. Juang, and K. Sivanesan, “Channel
agnostic end-to-end learning based communication systems with
conditional GAN,” CoRR, vol. abs/1807.00447, 2018. [Online].
Available: http://arxiv.org/abs/1807.00447

[4] T. J. O’Shea, T. Roy, and N. West, “Approximating the void: Learning
stochastic channel models from observation with variational generative
adversarial networks,” CoRR, vol. abs/1805.06350, 2018. [Online].
Available: http://arxiv.org/abs/1805.06350

[5] J. Zhu, R. Zhang et al., “Toward multimodal image-to-image
translation,” CoRR, vol. abs/1711.11586, 2017. [Online]. Available:
http://arxiv.org/abs/1711.11586

[6] A. B. L. Larsen, S. K. Sønderby, and O. Winther, “Autoencoding beyond
pixels using a learned similarity metric,” CoRR, vol. abs/1512.09300,
2015. [Online]. Available: http://arxiv.org/abs/1512.09300

[7] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature
learning,” CoRR, vol. abs/1605.09782, 2016. [Online]. Available:
http://arxiv.org/abs/1605.09782

[8] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro,
A. Lamb, M. Arjovsky, and A. Courville, “Adversarially learned
inference,” CoRR, vol. abs/1606.00704, 2016. [Online]. Available:
http://arxiv.org/abs/1606.00704

[9] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets,” CoRR, vol. abs/1606.03657,
2016. [Online]. Available: http://arxiv.org/abs/1606.03657

[10] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, and Z. Wang,
“Multi-class generative adversarial networks with the L2 loss
function,” CoRR, vol. abs/1611.04076, 2016. [Online]. Available:
http://arxiv.org/abs/1611.04076

[11] M. Abadi, A. Agarwal et al., “TensorFlow: Large-scale machine learning
on heterogeneous systems,” software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[12] J. B. Diederik Kingma, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

